Some basic facts
- Reactor:
- 200 seconds run per fuel cell
- Output 40 MW base + 40MW per fueled neighbor
- Heat capacity 10 MJ/°C means it can store 5Gj as heat between 500C to 1000C
- Heat exchanger:
- Consumes 10MW
- produces 103 steam/second and consumes 103 water/sec
- heat capacity 1 MJ/°C, so it can store 500Mj as heat between 500C to 1000C
- Heat pipe:
- heat capacity 1 MJ/°C, so can store 500Mj as heat between 500C to 1000C
- Offshore pump:
- produce 1200 water/sec. ( max pipe length 17 to sustain this flow )
- Storage Tank
- Volume 25000 units
- Steam:
- contains 0.097 MJ/unit
- Steam turbine
- consumes 60 steam/second
- energy produced depends on input steam temperature
Nuclear power plants designs
Best practically achievable is 3 neighbors setup when reactors placed in a row of 2. But it is hard to create neat arrangements for rest of required infrastructure in narrow strip behind the reactor. IMHO 2x2 is optimal, as it only 25% less efficient but much more manageable. In any case a moment when you overgrow 2x2 you should be able to afford some inefficiency.
Bellow is table how much stuff you need per reactor depending how many neighbors it has.
Num of neighbours | Power MW |
GJ per cell | Boilers required. | water pumps | Steam tanks 0% usage | Steam tanks at 50% usage | Steam turbines |
---|---|---|---|---|---|---|---|
0 | 40 | 8 | 4 | 1 | 0 | 0 | 7 |
1 | 80 | 16 | 8 | 1 | 0 | 0 | 14 |
2 | 120 | 24 | 12 | 2 | 1 | 0 | 21 |
3 | 160 | 32 | 16 | 3 | 2 | 0 | 28 |
Physical quantities are denoted in [square brackets] after each variable.
- Power[W] = 40[W] * ( 1 + Number of neighbors) - How much power is generated
- J per cell[J] = Power[W] * 200 sec
- Heat Exchangers = Power[W] / 10[W] - How many heat exchanges is required if reactor is running 100% of time
- Water pumps = Heat Exchangers * 103[unit/sec] / 1200[unit/sec] rounded up. - How many offshore water pumps are required to provide water
- Steam tanks = (J per cell[J] - 5Gj - Heat exchangers*30.5GJ)/0.097[J/unit]/25000[unit] rounded up, assuming 2 *heat pipes per heat exchanger - How many tanks to store steam are required to store energy from one fuel cell. Energy also spent to heat up Reactor, heat pipes and heat exchanges from 500C to 1000C and assuming no steam is used.
- Steam tanks at 50% capacity = (J per cell[J]/2 - 5Gj - Heat exchanger*3*0.5GJ)/0.097[Mj/unit]/25000[unit]. Same a above but power plant is running on 50% capacity.
- Max number of steam turbines = Power[W] / ( 0.097[J/unit]*60[units/s]) rounded up. - how many turbines is required to run power plant at 100% of capacity all the time.
Implementation example
Bellow some rough designs of upgradable power plant. It uses drone logistic to deliver fuel and extract spent one. Control circuit will load single fuel cell to rectors if amount of steam in tanks fell bellow 20%. This design has way more steam storage tanks than it needs, but tanks are cheap. Extra steam storage comes handy if you power remote bases by transporting steam to it by trains.
Start with “Standalone blueprint”. Maximum total output 40Mw. Whole station needs 1 pump worth of water.
Add second reactor by using “1 neighbor” blueprint rotated by 90 degree and stamping “1 neighbor” blueprint on top of existing “Standalone blueprint”. Maximum total output 160Mw. Whole station needs 2 pumps worth of water.
Add third reactor using “Standalone blueprint” rotated by 180 degree and stamping “2 neighbors” on top reactor in the corner. Maximum total output 280Mw. Whole station needs 3 pumps worth of water.
Add fourth reactor using “2 neighbors” blueprint and stamping same blueprint over other 2 reactors. Maximum total output 480Mw. Whole station needs 5 pumps worth of water.
Standalone blueprint
0eJzNmm+PozYQxr9KxcsWTtjmn6N+ir6tVhFJvFnrCFADq9uu8t1rkr1AEjvPEKlV3/SaO/h5PJ4ZP2P8GWyqQbVG132w+gz0tqm7YPXnZ9DpfV1W49/1H60KVoHu1SEIg7o8jL+6XpWHqB/MRtcqOIaBrnfqR7BixxC+Ww/bSpUmMqrc9o2Zvc0Jb7+pso/Uj+1bWe/V/GVBePmgdno4RKpS297obdQ21dz65PgSBqruda/V2Q2nHx/rejhs7GArdiG1ulVR30R70wz1zo7QNp19ranHsS0qSr6lYfBh/4eJb6kdYqeNHfT0QDZaekPmV2QHL73iOQhiIgyH1kHgE+HansRBS+gzZf6Zcgc5RTON0UwzQGAIkAMAtKAAAIEAEgA4ArAYEBJIYIAAI47x66x0Y3KIEd7ScL+009IwDy2hZxL3IGCIptAKFKOzbPQhcl/NexAt3EkqyKQUkOSyFfdMjcfLMJ514iiCp3WSHsKCsht7EOLx7nKPFFdI+7bS+7dNM5hxyxFpmPMX1zgwrjmaLAxrDiebLY9JiTcbnlPiQUDrCgoGT1IuTxfCJAUp6GG8CUbBJBCzrHZ7QkoICiWDxiTL6oEPky5NRXaRCsV9KnLhykMBK/tlCXOPmUh+TITCQ7jWHzQdmlNkqJB0MgdWJkiiTErP46lkgd5m3nm6RGiCCj9DpgkAgHND9VwgACrnHAFQJKNATlAgJwgwxXHV7HXX20zdvqmutwLwr8H+6aq5xfVCfz25ftWVffzctf1sRi/0wZT1WA9eB1VFW1VVFru1gdSPHasryxPps6wtu06/q6g1zbveuQyUYNbplBe67pR5PMviNpyT0fS6N0213qi38l1bnWzf2WqzHXS/tv+2u4BetbGuuWuKX6tB726a+bENHrv/vhy9ksZxPP4+tKUpRyW+Cn4/PfE1ihXou7XdFXfjeL2doHV8bwZlH2nelTHWM2uL2n63g/+tTkthH6zPc+hGU9j4H6N28zbbGrUqsmmU8Tcbe/K9Uaq+fTLN7548Ov3NCP6W1/5+5OFDYyfXvK6bVlnfnBCC5BmiB3JJnBddvKaeSERFbCJkHgJdlfpsSJ/YcbK7pHCRs4VyIJ+beiMGZOoqE+lUAUuj+7eDOhWK5rDRdelsYC95TcvqiToldvcgs6+Pu+7Lnh20UyNpPeW6TfRZKAe/2feboW+HZ/BHT5i7Ezi+DfTwYYLzsVQH3M+7Kwjhw8TivsR6Rl6RTvlSdO4zJZzv7AuKqgsh8RAWiCqOWLAExWg+4gmJRzpnzFBpYsg0JLDg3JDAEgiABBZHAHRQmSAAClgUr3lMXt9sUSrl9DAuFsVNzhduG1MN4K4mMpQiZDx3bR85ff/1nKTl9NNOzyFa/sz+yyj7b57NFGZjyr2Fl/X3R8ftHhNzIkh47XMudEHEZsg++bQK4P+FCujULhraiKYGInYtB379N+SAQ/WOKv1W9S7Z7PnNZl8Qu4OCvKF6Tp0K+im0jwB3UQ5MgHWEIxPo3/sYsCVdmKyepCqo1SObca5znh57QIjexpJPOBZPtwPx/6YbGDv/mF4C3EcJi9oAlyz/ynza+YB7LZD0uaSlZ2MsyFrdE8ESVhYOALCyxAAACwsDgKUft9jMpzdKyOoqmVollLmUkKTXn9iX7y6VKJd+EpD+CaTZWco5TwIkvJSAXJ3TK7DXBS6ZI1EiMBSGcqEPo4uByb0XGefWh4lPErMYZk02gzsJMG0SRCCfrHkJZGXvvd9BPlnz2gC/9wpEgN+6YkSA37oYItAPY9jMpbA7YTGq78gyeAUHOQfewEHrw1CcohBhKExRnMPbNijV4F2bHAFQjKJywVCISgRABbZAABiJKJI4CkWGghnepWEolvjic5OfjnV8e5fSuTnMLtuYZtO0jeldJYWftzPmtjNZaufPGHbd1/EZulR35I/GmGTTImbiq4dxeG9wdjvoSepctunnPEYaOXcIRekTiozPT23ml5D9Me/5DstmF30AqgCk2d0eQEoRiVFJHJE4lXTZxb0oQUYJhErIqGyOegnP3exqdmE9DN6V6c7Ct2BJLnmecCnF2DdV5UbZPjX443ST9Bfb5p6umh//AUqyH7o=
1 neighbor blueprint
0eJzNm9tu4zYQhl+l0GVrL0TqSKNP0dtiYcg24wgrS6oOwW4XefdSdqKDxfE/NNCiF203W+njkJz5OTNifnqHotd1k5edt/vp5ceqbL3dnz+9Nj+XWTH8Xfej1t7Oyzt98TZemV2Gn9pOZ5dt1zeHvNTe+8bLy5P+7u3E+wa+W/bHQmfNttHZsaua2duS8farzrqt/n58zcqznr8cMF6+6FPeX7a60MeuyY/buirm1ofvXzeeLru8y/VtGa4//NiX/eVgBtsJYgE2Xl215q2qHIY2pG36Jdp4P8wfhPwSmRFOeWPGvD5wneUdWI7gOq/1tqu256bqy5OFHI7k4J4cW8jBgmzhRQuehRBOhP5SWwhyIiztCS20iD9TQc/UtoYxmqmPZpoAgkCAFACgBQoAAgQQPiBISBCAEEKCBATociJYxrsdk0BMSIrOem+nvREELeKHkiQQ0EcjaAVy0lk4UoiUUtNHMSOtKMVGycck6bNJESAJN+chVklKNwyx5TJwPzMU68gI2b6kCNMcHNonEPHjs3WNDBZI87bOz6+Hqm+GAzeUGxV/tY3D93pqskibZ3FDTVZxPGIWMgQn4Lv6BFP4aA2EezBysKxAEHDWLE3HixdyMAHERBwMdIkgdlctzpInHOtgdAYpBxNCDMvvExCAoc+hxMiY0FHdKYx0FS4xeni6Fi5pVa3wCe2POdof8rU/IebP1/6UICxzGV7NknBKljDhkyWyEsq+j1ZK8a0R5DxtuxihXF0A0yKUqqO5RShTDxAAlZcSAZAnI0eOkCOHCDD5cVGd87YzEnB81W1naoW/evNfm5iny43+eHL/khfm8Vvr4LMjMtL7JisHoXnpdbE96qIw2KNxpG5om9jkI0ooy+qsbfM3va2b6i0/2QxUaNZTXORlq5vHs0zv3TkcTC+7pir2B/2aveWmpDLvHPPm2Ofd3vy/0wh6yRuzNKvOzEvR56e7jtLQixlaUF02rErk+/7w86XOmmwo2nbe79cnPkYxtdxpb47b0zBeZyZoFr5rem0eqd5005iV2RvU8ZsZ/G993QrzYHmbQzuYIoZ/Nfo07/UYo0wNLKdhrn8xdIbOjdbl/aOJv3ry3brgirHgarngj5b4UpnZVS/7qtZmca6IgLU03CXwA97EYta5PpXXhFDHrHN9eQjbMJKdkA2NDuuJazuTYlb2KtBxFLOyV4FUM+af3hFB4HciYoLAL8koG9InzvnVbtny51g5ZnfJ3NS73E7Yk7tk8vusybvXi77qc3UxGV5mbTGNcsoT04k66Wn7QFCXre71aWMGbfVA2k8Sa+YwExDvN/N+1Xd1/wz+nRAXq2wO589SXTYPZVUOJ6QnSd5ahjeP5UwScpagnEoBr05QTqVAYCWOUkPZ4Sg1lDXR8ojm1DCsdn3yTP3A+uSRQGWK5jwbAVYNIyEkCA5VgwSsFNUJUw1DfZcQfGuE0y6myNsFMg1VEHBuqIIIEAAdphIB0FkaIgByWOSvKf8kjZ1CKeW7sVv0K+TTCkxZsXWaiCrlnimylkw5yjdlnqN8U8v0hHz7rA107vyPUSBt/bONkOFGxKkt1VJ8QSc+5ii+oBPfcdQzgi44yarw/dkeVU12NvSs/PaoOU59/BVMUkBaaNtr4UsmN4YWTtHhmjXL/yJrbvVp29dbXva8Fcv0+dd/I3221OZDL+G+NHdJjud7fGt3MGt94aPDVoEwEj46bRV0IXbpSvT+hc/XExLB/pxIEtBdj0lGKMTdZY9HmiSANcJVOajdEa5SsVYgfhyAInLl11TRJ8TTsuT/b2r5oV3q8wXJ3n91KuKtRfWHEDG7qsR2sGWG9Gf+PTOFQgPqzZiFUaKHL+2MjU0SkToncqybh0JAHYqAaRLWpxEQDYmS+VELSQKqQ8camSTAm5ICESav5aXEYrFRi4RYDQmx+SdObAmxkHz39imdtRUvwvlCj6LnEKuPpD6yzwFet4QLzi97BbkM1qCQKCgEcsjAZ8fryCI6eWJ2sYd7WeFzuqGlnx1LsydksSUCGErxDG4lwFAKEYF9wYEksD+RkHdQoe5LZAOU/QAR2NcXSAKUdwEIoXuWuWqUWOveEKk+tAx5KlqcEDkq2h94EQe5CLyHg/w85DYfSQBy0gQBkI8iuQiRiyoAiPgeqpw8FF6wSZFlsD2OXBTesBEoSuAVG4GcdHbHBp1ln3tNfLgWs9s2CBUgVMJG+QjFTq4lIikuKQKkmJ1ApIjE/rWl0ZdIlPO1yc+As1yaNHmNNQGZ3bVoqkNVV01nzZpu+ZewG+qai48pie1eOmlp5DhK8miQa74/5fxO4NH6lbD5m7XZ8SoljJ4fkjVisprstTAYk9Dn9oo1dGoprUxGfV3mr5tbq2U3+z3Ijfemm/ZWG6TmeFQyCaVSwfDFqcgOujBP/3H9NaJfWn37Dcb3fwCfSWOk
2 neighbors blueprint
0eJzNnG1v20YMx7/KoJebVYin08MF+xR7OxSGYl8Sobbk6SFoV+S772Qnlmwf/ecF2LA3bdNaP/F4JI/k0f0ZPe5Ge+jqZogefkb1pm366OHPn1FfPzfVbvq74cfBRg9RPdh9tIqaaj/91A+22sfD2D3WjY3eVlHdbO336IHeVvDZZtzsbNXFna02Q9stnlaCp19sNcT2++alap7t8uFU8PDebutxH9ud3QxdvYkP7W4pvX77uopsM9RDbU9qOP7wY92M+0f3sgdiFLCKDm3vnmqb6dWOFJP6kq2iH9Of6Ev2Nsl2xVJiVnlGOaiTdlt3Tv7jB5QHnJ7Bh/pg46GNn7t2bLYesj6T02ty7iHrC7KHl13wPIRsJoz7g4cwqy29lEd7aLl8pcSv1KfDAq00QSstAYEQwAAAlIASQEghgQBBQYICBA0JKSBAmyN9GTz8mAJiMjaC3W5ugryfcrkvKQYBjTSDUiArjWEYI8OF5ntOo7wRMRGjFCCRmJQBkgozHi7Yp2EYZsuVDj80jCTeqUxsS4YRLcCgEwZR3D+ob5HpBdI9bevnl8d27KbTW2crIv3V9yK52XOrRdF54TjMatNEYhILn+E4clufYQYfrqkK90YJVuQJBFctCupYeZkEk0JMLsFgkyjCw5ZE5aVEOuieqZFgNMJokd0XwAE1SSg5FCYwvHOYVByX58IgY1gwy54RJYPIQgMp0RJ5FUhV4QuiOg8/i3LJWaTleU3BrB/G9wxp8DK+y4qoQlJDZYmcjPY5Q/n5HPAZTWVKLg2x6/TtYobydkKiIT+Aa0M5TYoAKKVRCIAsGRlyhgxZI4AoZheAkoeFbMZa89lad+1z3Q8uHG1ebD+4Ouqv0f3uO+fKS6N7/+T6qd65j596NB+tpzN97KpmCnpPo93FG7vbOezGGfUw9ad8oSxXnGSHqu/rVxsfuva13voENEh3sx/UTW+7+6ssr11LT6I3Q9fu1o/2pXqtXbnpntnU3Wash7X7t+0Z9FR3TjU3LbCn3Vhvr1p3U9Nr6vUN1aSVLEmS6ef9oeqqqaB9iH4/fuL9La7O3a5dJrKd3je4BTrFD91o3UfaV9t1TjNrh9p8cy//2x63wn2wOa2hn0Sh6ZfObpdNNSeUq+7T+TXHv5hacM+dtc31R8vi5pNvXoVrgcLNpcLvqXjfutW1T+v2YJ1yjohUpBqpCqZiVbQwUa46tx44NxTlqpcJgQ8jz1WnNpL39Pedj7koWYUpUC4KfIQieIF6aHMmwaRzBTyjs2V25COgHlqMUsoioCWs2FzNV1oUojJsTkO4JWZiY5pZEvFEtg6lk5u6ChFOZulIOJGhK0ApRSd8iiiiogzZeymqyTSipOJNywI2rQxrJnPCiUJ5jiizdcvKvGIZJ66KPNKlLzUqZ9uvunp42dtjctTuXalXeXvfJadN/zE7U+dkpr+TzVxe6N2meu6lvZ1I6zm/cca9OL2j39zz7Tgcxs/g35iT3Zuz5DfZzepuTqOm9DRSLO82B1rdzyUUk0uUqLAw4EgpUQPUAOM1oogDuyVGFHIIxT/zidtY0UWi+cxtrOgy1shvY7kbRnnTXzOEgBtYhVjyO1duPaVcGgrbRWTtBESjBCWSaHGUoEQyhQSUSCpIQE0dDQnIapHRUpKJdzkPcihK5NYcFgQoQbZt4KrFAZtxL0rkF7UfBZtMbRQYyTkBKTCUs0ML8lg+w5jGPpG8s18uWdgmFmMJwib92bmUr0e/Ip2vyHizOCJ5qOfu+QMmFriBhauJBdlxQZI6lBaTDL1LS6tnR6+ab/euBDkhjZCUshJ693sx3XCfmyMJF9MNoTm5+i9y8t5u4/EQy3LzmC6T81//jeTc03ab2oTXXbeQ1Hu5x6dOpgfo3z50DBvkRwodwwaakA4+DG6imvcwWAySiII4u0RZl1LBhYovE7kTAA+LZOgQkU+LcIQU9iHhSZaSOPgSkkYFhkhud9I0MCbehlq5w4Na/MaBudqZFrMngfE3+d+0RKYrn0Qeef13SEG9EG9v4j3iCm+GmO1AuY2BriFP/A1yjSIsbrEcGHXODC6EpjDqnC95OIROgrNf0Yg6afGtCCsavBXJQPDR6BQ9x1SWAFswCSLAvJwQIbQJTBcbddkDdjUJ6dJVEd6JH9Ly/D3hArY3a1gM7MgWYfhFlPl7JUT+NcBWDtJ4wAQPsWrwegWc5yFkkdknal+ms0qLCR7pFNnHcrXHtkpnWy6J5ipUOO4T5wu4lwB9SSOCuMRlCeJ0k/2WgXg2mZUBxv0UEHKYbSaIAOM7IYJ8Mo0WKsWdglw6mMZKJh1MYwHSwTQWIB1MYwHSwTQWIB1MYwHISAsAgJMZKFzAwQyDAHILNUEWWiALLZFkyEIJmWiBTJSQlxTIRgkZ6WLsAp1lH3vNTPFQUYpRKUIZMSoBqFKcXStEEn8xNUMkcQJRIpK4c362JRYV3Cr/cDjPNLvLa7wJyGImo2sf20PbDd6s6ZR/kV9Q+Uz8R3wjWWpYBn836iMC+74axeoAJh/pkupFhPuHUAVG7C46EEyBui3uqfZYP+VsDSWfNKBQ/cB69kIvXgRMwlOIQCdHcU0IUv15CTdHabK6lSW/3pz3ovBTrxS9sbgxh2Mpei57PufDoleXvmreFXFHS/y6OrUJHxb/4cMqerVdfzKo0hX3RhVaGZNO/rCrHu3OffqP41ecf+nt6b9qePsHsZ81/A==